A comprehensive review of the imidazole, benzimidazole and imidazo[1,2-a]pyridine-based sensors for the detection of fluoride ion
Abstract
Imidazole-based chemicals exhibit significant potential in various scientific fields, mainly in the chemical and pharmaceutical sciences. The imidazole ring is a five-membered aromatic heterocycle found in several natural and synthetic substances. Its distinctive structural property, which includes a desirable electron-rich characteristic, allows imidazole derivatives to readily bond with a wide range of anions, cations, and neutral organic molecules. This review aims to assemble the sensing qualities of the most recently reported imidazole derivatives and analyse their potential as sensors. Among all other ions, fluoride sensing is primarily targeted for this context, because fluoride ions have garnered a lot of attention in recent decades due to their distinctive physiochemical properties and essential roles in many biological, chemical, pharmaceutical, and environmental processes. Fluoride ion detection is a broad field, and several fluorescent probes are continuously introduced to bind fluoride ions in aqueous and organic media. A few reviews have been published, emphasizing macrocycle cages, nanomaterial probes, bio-material sensors, and large organic molecule chemosensors for F− detection. A special review focusing solely on fluoride sensing by the imidazole-based moiety has not yet been addressed. Imidazole compounds have surged in prominence over the last few years, making them particularly desirable for developing efficient, sensitive, and selective fluoride detection methods. The present review concisely represents the contribution of a wide variety of imidazole fluorophores for fluoride ion detection.