Pd-catalyzed asymmetric allylic alkylation of N-hydroxyphthalimide esters with allyl acetates†
Abstract
The palladium-catalyzed asymmetric allylic alkylation of carbon-based pronucleophiles is a highly efficient strategy for the synthesis of pharmaceutically relevant molecules. While significant progress has been made in the allylation of azlactones to access valuable α-amino acids, there remains a notable gap in catalytic asymmetric transformations regarding 2-alkyl-4-aryl-, 2,4-diaryl-, and 2,4-dialkyl-substituted azlactones. To address this challenge, we developed a palladium-catalyzed asymmetric allyl substitution of N-acyl phenylglycine N-hydroxyphthalimide esters with allyl acetates, featuring good yields, remarkable stereoselectivity, and a broad substrate scope. Furthermore, the allylated products can be readily derivatized into diverse polyfunctional compounds that have great potential for the exploitation of pharmaceuticals and biologically active molecules.