Cation radicals, borenium cations, and a dication from the oxidation of B-tolyl BIII subporphyrins†
Abstract
Oxidation of B-tolyl BIII 5,10,15-tritolylsubporphyrin with tris(4-bromophenyl)ammoniumyl hexachloroantimonate gave its cation radical instantaneously, which slowly dissociated to give BIII subporphyrin borenium hexachloroantimonate in 89% yield after stirring overnight. This is a much more convenient method for the synthesis of BIII borenium cations than the previous synthesis with [Et3Si]+[CH6B11Br6]−. Oxidants such as tris(4-bromophenyl)ammonium tetrakis(perfluorophenyl)borate and AgSbF6 can be used for the synthesis of the borenium cation. Oxidation of B-tolyl BIII 5,10,15-trianisylsubporphyrin with AgSbF6 gave a cation radical that was stable at room temperature but dissociated to give the corresponding borenium cation upon refluxing in CH2Cl2, while the B-tolyl BIII 5,10,15-tris(4-dibutylaminophenyl)subporphyrin was oxidized to give a cation radical that was easily oxidized to afford a quinonoidal dication. Oxidation of B-tolyl BIII β-hexaethyl-5,10,15-tri(4-diethylaminophenyl)subporphyrin with AgSbF6 gave a borenium cation instantaneously. As such, the reactivities of the cation radicals depend on the peripheral substituents.