Issue 2, 2025

The structure-dynamics feedback mechanism governs the glassy dynamics in epithelial monolayers

Abstract

The glass-like slow dynamics in confluent epithelial monolayers is crucial for wound healing, embryogenesis, cancer progression, etc. Experiments have indicated several unusual properties in these systems. Unlike ordinary glasses, the glassiness in cellular systems strongly correlates with their static properties and is sub-Arrhenius. These results imply that the slow dynamics in epithelial monolayers is either not glassy or the underlying mechanism is different from ordinary glasses. Combining the analytical mode-coupling theory (MCT), vertex model simulations, and cellular experiments, we show that the slow dynamics is glassy, though the mechanism differs from ordinary glasses. The structure-dynamics feedback mechanism of MCT, and not the barrier-crossing mechanism, dominates the glassy dynamics, where the relaxation time diverges as a power law with a universal exponent 3/2 and naturally explains the sub-Arrhenius relaxation. Our results suggest the possibility of describing various complex biological processes like cell division and apoptosis via the static properties of the systems, such as average cell shape or shape variability.

Graphical abstract: The structure-dynamics feedback mechanism governs the glassy dynamics in epithelial monolayers

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
04 Sep 2024
Accepted
04 Dec 2024
First published
06 Dec 2024

Soft Matter, 2025,21, 269-276

The structure-dynamics feedback mechanism governs the glassy dynamics in epithelial monolayers

S. Pandey, S. Kolya, P. Devendran, S. Sadhukhan, T. Das and S. K. Nandi, Soft Matter, 2025, 21, 269 DOI: 10.1039/D4SM01059K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements