Development of an AI-derived, non-invasive, label-free 3D-printed microfluidic SERS biosensor platform utilizing Cu@Ag/carbon nanofibers for the detection of salivary biomarkers in mass screening of oral cancer

Abstract

Developing a non-invasive and reliable tool for the highly sensitive detection of oral cancer is essential for its mass screening and early diagnosis, and improving treatment efficacy. Herein, we utilized a label-free surface enhanced Raman spectroscopy (SERS)-based biosensor composed of Cu@Ag core–shell nanoparticle anchored carbon nanofibers (Cu@Ag/CNFs) for highly sensitive salivary biomarker detection in oral cancer mass screening. This SERS substrate provided a Raman signal enhancement of up to 107 and a detection limit as low as 10−12 M for rhodamine 6G molecules. Finite-difference time-domain (FDTD) simulation studies on Cu@Ag/CNFs indicated an E-field intensity enhancement factor (|E|2/|E0|2) of 250 at the plasmonic hotspot induced between two adjacent Cu@Ag nanoparticles. The interaction of this strong E-field along with the chemical enhancement effects was responsible for such huge enhancement in the Raman signals. To realize the real capability of the developed biosensor in practical scenarios, it was further utilized for the detection of oral cancer biomarkers such as nitrate, nitrite, thiocyanate, proteins, and amino acids with a micro-molar concentration in saliva samples. The integration of SERS substrates with a 3D-printed 12-channel microfluidic platform significantly enhanced the reproducibility and statistical robustness of the analytical process. Moreover, AI-driven techniques were employed to improve the diagnostic accuracy in differentiating the salivary profiles of oral cancer patients (n1 = 56) from those of healthy controls (n2 = 60). Principal component analysis (PCA) was utilized for dimensionality reduction, followed by classification using a random forest (RF) algorithm, yielding a robust classification accuracy of 87.5%, with a specificity of 92% and sensitivity of 88%. These experimental and theoretical findings emphasize the real-world functionality of the present non-invasive diagnostic tool in paving the way for more accurate and early-stage detection of oral cancer in clinical settings.

Graphical abstract: Development of an AI-derived, non-invasive, label-free 3D-printed microfluidic SERS biosensor platform utilizing Cu@Ag/carbon nanofibers for the detection of salivary biomarkers in mass screening of oral cancer

Supplementary files

Article information

Article type
Paper
Submitted
13 Dec 2024
Accepted
27 Jan 2025
First published
05 Feb 2025

J. Mater. Chem. B, 2025, Advance Article

Development of an AI-derived, non-invasive, label-free 3D-printed microfluidic SERS biosensor platform utilizing Cu@Ag/carbon nanofibers for the detection of salivary biomarkers in mass screening of oral cancer

N. Sunil, R. Unnathpadi, R. K. Seenivasagam, T. Abhijith, R. Latha, S. Sheen and B. Pullithadathil, J. Mater. Chem. B, 2025, Advance Article , DOI: 10.1039/D4TB02766C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements