A highly selective indole-based sensor for Zn2+, Cu2+, and Al3+ ions with multifunctional applications

Abstract

A wide range of chemosensors has been developed for detecting specific metal ions at trace levels, attracting considerable research interest. However, despite the significant role of indole-based molecules in the biological domain, only a few chemosensors incorporating this moiety have been reported. In this work, a novel indole-based receptor [R = (Z)-3-((((1H-indol-4-yl)methyl)imino)methyl)benzene-1,2-diol], was synthesized and characterized using single-crystal X-ray diffraction, NMR, IR, and ESI-MS techniques. Sensing studies conducted in a CH3CN/H2O (7 : 3, v/v) solvent system demonstrated that the receptor R exhibits selectivity towards Zn2+, Cu2+, and Al3+ ions, with turn-on fluorescence and UV-Vis spectral responses while showing insensitivity to other cations and anions. Binding studies revealed the formation of 1 : 2 stoichiometric complexes between R and the respective metal ions. The interaction with Zn2+ resulted in enhanced fluorescence emission at 497 nm, whereas Al3+ and Cu2+ ions caused significant bathochromic shifts in the absorption maxima from 290 nm to 308 nm and 318 nm, respectively. The calculated detection limits were 0.056 μM for Zn2+, 0.57 μM for Cu2+, and 0.45 μM for Al3+. Density functional theory (DFT) calculations confirmed that R coordinates effectively with these metal ions, stabilizing the complexes by reducing the HOMO–LUMO energy gap. Molecular docking studies further indicated strong binding affinities of R and its metal complexes to DNA and bovine serum albumin (BSA), elucidating the potential binding sites within these biomolecules. The receptor R exhibits outstanding potential for detecting Zn2+ ions in the Caenorhabditis elegans model system. Its excellent membrane permeability and biocompatible nature enable efficient intracellular uptake, ensuring accurate and reliable detection of Zn2+ ions in living organisms. Furthermore, the receptor was employed in designing molecular logic gates and keypad lock systems, demonstrating its utility in developing functional molecular devices.

Graphical abstract: A highly selective indole-based sensor for Zn2+, Cu2+, and Al3+ ions with multifunctional applications

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2025
Accepted
22 May 2025
First published
22 May 2025

J. Mater. Chem. B, 2025, Advance Article

A highly selective indole-based sensor for Zn2+, Cu2+, and Al3+ ions with multifunctional applications

G. G. V. Kumar, P. Sharma, G. Thiruppathi, P. Sundararaj and A. Draksharapu, J. Mater. Chem. B, 2025, Advance Article , DOI: 10.1039/D5TB00333D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements