Reactive oxygen species and UV-B: effect on cyanobacteria
Abstract
Reactive oxygen species (ROS) are involved in the damage and response of cyanobacteria to UV-B irradiation. In cyanobacteria, there are several targets for the potentially toxic ROS such as lipids, DNA and protein. The damage to photosynthetic apparatus induces the inhibition of photosynthesis that is mediated partially by ROS. UV-B-induced oxidative stress and oxidative damage increases with irradiation time and can be reversed after long-term irradiation. This raises the interesting question of whether cyanobacteria can acclimatize to the present UV-B stress. On one hand, ROS may also act as signal molecules and mediate the genetic regulation of photosynthetic genes and the induction of antioxidant enzymes. On the other hand, the efficient defense and repair system allows cyanobacteria to recover from the oxidative damage under moderate UV-B irradiation. In addition, the following methods are discussed: the fluorogenic probe 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA), used to detect oxidative stress induced by UV-B; thiobarbituric acid reactive substances (TBARS), used to determine lipid peroxidation in cyanobacteria; fluorimetric analysis of DNA unwinding (FADU), used to quantify DNA strand breaks induced by ROS formation under UV-B stress.