Issue 1, 2008

A microfluidic bioreactor for increased active retrovirus output

Abstract

Retroviruses are one of the most commonly used vectors in ongoing gene therapy clinical trials. To evaluate and advance virus production on the microscale platform, we have created a novel microfluidic bioreactor for continuous retrovirus production. We investigated the growth kinetics of a retroviral packaging cell line in microfluidic bioreactors for several compartment sizes, and packaging cells perfused in the microdevices showed similar growth kinetics to those cultured in conventional static conditions. To evaluate the efficiency of retrovirus production, virus titers from the microdevices were compared to those obtained from static tissue culture. When retrovirus production and collection were maintained at 37 °C, virus production levels were comparable for the microdevices and static tissue culture conditions. However, immediate cold storage downstream of the packaging cells in the microdevices resulted in 1.4- to 3.7-fold greater active virus production levels with the microdevices compared to the conventional static conditions over a 5 day period. Lastly, the use of microfluidics for virus production provides a continuous supply of virus supernatant for immediate infection of target cells or for preservation and storage. Such devices will be valuable for the optimization of production and evaluation of retroviruses and other viral vectors for gene therapy applications.

Graphical abstract: A microfluidic bioreactor for increased active retrovirus output

Article information

Article type
Paper
Submitted
30 Jul 2007
Accepted
09 Oct 2007
First published
30 Oct 2007

Lab Chip, 2008,8, 75-80

A microfluidic bioreactor for increased active retrovirus output

H. N. Vu, Y. Li, M. Casali, D. Irimia, Z. Megeed and M. L. Yarmush, Lab Chip, 2008, 8, 75 DOI: 10.1039/B711577F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements