Issue 6, 2009

The ins and outs of proton complexation

Abstract

Proton complexation differs from simple protonation by the fact that the coordinated hydrogen atom is bound intramolecularly to more than one donor atom. This is usually achieved by covalent bonding supplemented by hydrogen bonding. In a few cases, however, the complexed proton is hydrogen-bound to all donor atoms, which gives rise to single well (SWHB) and low barrier (LBHB) hydrogen bonds. This tutorial review highlights a full range of proton complexes formed with chelating and “proton-sponge”-type ligands, cryptand-like macropolycycles, and molecules of topological relevance, such as rotaxanes and catenanes. The concept of proton complexation can explain how the smallest cation possible can bring molecules to order and trigger intramolecular molecular rearrangements and motions.

Graphical abstract: The ins and outs of proton complexation

Article information

Article type
Tutorial Review
Submitted
19 Dec 2008
First published
08 Apr 2009

Chem. Soc. Rev., 2009,38, 1663-1673

The ins and outs of proton complexation

J. Chambron and M. Meyer, Chem. Soc. Rev., 2009, 38, 1663 DOI: 10.1039/B805695C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements