Issue 8, 2010

Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine

Abstract

The inhibition of crystallization from organic amorphous solids is currently of great interest in the pharmaceutical field, since the amorphous form of the drug can enhance drug delivery. Polymers have been found to be effective crystallization inhibitors for many organic glasses and supercooled liquids. The objective of this study was to investigate potential correlations between drugpolymer hydrogen bonding and crystal growth inhibition. Quench cooled samples of a model hydrophobic drug, felodipine, were prepared with various polymers: poly(vinylpyrrolidone) (PVP), hydroxypropyl methylcellulose acetate succinate (HPMCAS), poly(vinylpyrrolidone)/vinyl acetate (PVP/VA) and poly(vinyl acetate) (PVAc). Crystal growth rates as a function of temperature (70–110 °C) were measured using optical microscopy, in the presence and absence of 3% w/w polymer. Differential scanning calorimetry (DSC) was used to evaluate glass transition temperatures (Tg) and melting points. Infrared (IR) spectroscopy was used to probe drugpolymer hydrogen bonding interactions. The various polymers were found to inhibit the crystal growth to different degrees. The order of inhibition effectiveness was PVP > PVP/VA > HPMCAS > PVAc with PVP being the best inhibitor among the polymers used. The growth rates in the presence of the polymers were similar to those of the drug alone at high temperatures but showed a significant reduction as the temperature was reduced. The Tg's of the drugpolymer dispersions were not significantly different from that of the pure drug. The order of the strength/extent of drugpolymer hydrogen bonding interactions was PVP > PVP/VA > HPMCAS ≥ PVAc. Hence polymers which can form stronger/more extensive hydrogen bonds with the drug appear to be better crystallization inhibitors.

Graphical abstract: Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine

  • This article is part of the themed collection: New Talent

Article information

Article type
Paper
Submitted
28 Jan 2010
Accepted
09 Mar 2010
First published
29 Mar 2010

CrystEngComm, 2010,12, 2390-2397

Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine

U. S. Kestur and L. S. Taylor, CrystEngComm, 2010, 12, 2390 DOI: 10.1039/C001905D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements