Enclosed pillar arrays integrated on a fluidic platform for on-chip separations and analysis†
Abstract
Due to the difficulty of reliably producing sealed 3-D structures, few researchers have tackled the challenges of creating pillar beds suitable for miniaturized liquid phase separation systems. Herein, we describe an original processing sequence for the fabrication of enclosed pillar arrays integrated on a fluidic chip which, we believe, will further stimulate interest in this field. Our approach yields a mechanically robust enclosed pillar system that withstands mechanical impacts commonly incurred during processing, sealing and operation, resulting in a design particularly suitable for the research environment. A combination of a wafer-level fabrication sequence with chip-level elastomer bonding allows for chip reusability, an attractive and cost efficient advancement for research applications. The characteristic features in the implemented highly ordered pillar arrays are scalable to submicron dimensions. The proposed fluidic structures are suitable for handling