Issue 8, 2010

Lateral patch-clamping in a standard 1536-well microplate format

Abstract

Lateral patch-clamping has emerged as a chip-based platform for automation of the conventional patch-clamp technique, the ‘gold’ standard for studying cellular ion channels. The conventional technique, as it relies on skilled-maneuver of glass micropipettes to patch cells, is extremely delicate, low in throughput, and thus cannot be used for primary screening of compounds against ion channels. Direct integration of glass capillaries on silicon provides lateral junctions for automated trapping and patching of cells. We demonstrate here a method of scaling up the lateral junctions to a standard 1536-well microtiter plate format. A single unit of 1536-well plate has been formed here on a 9 mm by 9 mm microstructured silicon with the inclusive of 16 wells molded in a capping layer made of polydimethylsiloxane (PDMS). The silicon substrate provides integrated glass capillaries (total 12) and their associated microfluidic network. Each glass capillary has an independent access through a dedicated well in PDMS and leads to a centralized channel in which cell suspension can be delivered through one of the remaining 4 wells. The unit has been tested on RBL-1 cells by recording whole-cell activity from inwardly rectifying endogenous potassium channels. A revised test protocol has been prescribed to avoid inaccurate readings due to altered ionic composition of the recording buffer when a typical suction is applied to capture cells.

Graphical abstract: Lateral patch-clamping in a standard 1536-well microplate format

Article information

Article type
Paper
Submitted
23 Oct 2009
Accepted
21 Dec 2009
First published
20 Jan 2010

Lab Chip, 2010,10, 1044-1050

Lateral patch-clamping in a standard 1536-well microplate format

K. C. Tang, J. Reboud, Y. L. Kwok, S. L. Peng and L. Yobas, Lab Chip, 2010, 10, 1044 DOI: 10.1039/B922051H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements