Issue 6, 2010

Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells

Abstract

We have synthesized and purified silver nanoparticles (Ag NPs) (11.3 ± 2.3 nm) that are stable (non-aggregated) in cell culture medium and inside single living cells. We have developed new imaging methods to characterize sizes and number of single NPs in the medium and in single living cells in real-time and determine their stability (non-aggregation) in the medium and in single living cells at single NP resolution. These new approaches allow us to study toxic and therapeutic effects of single Ag NPs on tumor cells (L929, mouse fibroblast cells) with determined sizes and concentrations (doses) of NPs over time at single NP and single cell resolution. We found that Ag NPs inhibited the growth and division of tumor cells and their nuclei, in a dose and time dependent manner, showing significant inhibitory effects and abnormal cells with giant undivided nuclei or multiple nuclei beyond 12 h incubation. The results show that Ag NPs inhibited the segregation of chromosomes, but not their replication. Intracellular Ag NPs were well distributed in the cell population, and located in the nuclei and cytoplasm with higher numbers in the cytoplasm. This study demonstrates the possibility of using Ag NPs to inhibit the growth and division of tumor cells and using their cytotoxicity for potential therapeutic treatments. This study offers a new method to count the number of single NPs in the medium for characterization of their concentration and stability at single NP resolution over time.

Graphical abstract: Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells

Supplementary files

Article information

Article type
Paper
Submitted
03 Feb 2010
Accepted
26 Mar 2010
First published
27 Apr 2010

Nanoscale, 2010,2, 942-952

Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells

P. D. Nallathamby and X. N. Xu, Nanoscale, 2010, 2, 942 DOI: 10.1039/C0NR00080A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements