Controlling Ring Translation of Rotaxanes†
Abstract
Novel rotaxanes containing two 9-aryl-9-methoxy-10-methyl-9,10-dihydroacridine moieties (acridanes) at both ends of the molecular axle as recognition stations for the tetracationic ring CBQT4+ were synthesized together with their acridinium counterparts. A new concept of controlling the ring movement within rotaxanes has been realized with these rotaxanes. Owing to Brownian molecular movement, the ring shuttles from one end of the axle to the other one in