Issue 5, 2010

X-ray snapshots for metalloporphyrin axial ligation

Abstract

Axial ligation mechanisms of a metalloporphyrin, nickel(II) tetramesitylporphyrin (NiTMP), were investigated by static and transient X-ray absorption spectroscopy at Ni K-edge (8.333 keV). A surprisingly broad (i.e. ∼1.4 eV) linewidth for the 1s → 3dx2-y2 transition in the ground state was attributed to strong geometry dependent 3d molecular orbital (MO) energies due to coexisting conformers in solution. The broad distribution of 3d MO energy levels enables transient degeneracy of the 3dz2 and 3dx2-y2 MOs to produce a temporary vacancy in the 3dz2 MO which favors axial ligation. Photoexcitation also induces the vacancy in the 3dz2 MO, leading to a more than two-fold enhancement in the axial ligated species. Therefore, a unified axial ligation mechanism for both the ground and excited state is proposed based on the elucidation of the excited state structural dynamics, which will have a broad impact in understanding and controlling axial ligation in enzymatic reactions and molecular catalysis involving transient axial ligation.

Graphical abstract: X-ray snapshots for metalloporphyrin axial ligation

Supplementary files

Article information

Article type
Edge Article
Submitted
06 Jun 2010
Accepted
02 Sep 2010
First published
30 Sep 2010

Chem. Sci., 2010,1, 642-650

X-ray snapshots for metalloporphyrin axial ligation

L. X. Chen, X. Zhang, E. C. Wasinger, J. V. Lockard, A. B. Stickrath, M. W. Mara, K. Attenkofer, G. Jennings, G. Smolentsev and A. Soldatov, Chem. Sci., 2010, 1, 642 DOI: 10.1039/C0SC00323A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements