Issue 38, 2011

Computational and spectroscopic studies of organic mixed-valence compounds: where is the charge?

Abstract

This article discusses recent progress by a combination of spectroscopy and quantum-chemical calculations in classifying and characterizing organic mixed-valence systems in terms of their localized vs. delocalized character. A recently developed quantum-chemical protocol based on non-standard hybrid functionals and continuum solvent models is evaluated for an extended set of mixed-valence bis-triarylamine radical cations, augmented by unsymmetrical neutral triarylamine-perchlorotriphenylmethyl radicals. It turns out that the protocol is able to provide a successful assignment to class II or class III Robin-Day behavior and gives quite accurate ground- and excited-state properties for the radical cations. The limits of the protocol are probed by the anthracene-bridged system 8, where it is suspected that specific solute–solvent interactions are important and not covered by the continuum solvent model. Intervalence charge-transfer excitation energies for the neutral unsymmetrical radicals are systematically overestimated, but dipole moments and a number of other properties are obtained accurately by the protocol.

Graphical abstract: Computational and spectroscopic studies of organic mixed-valence compounds: where is the charge?

Supplementary files

Article information

Article type
Perspective
Submitted
01 Jun 2011
Accepted
03 Aug 2011
First published
31 Aug 2011

Phys. Chem. Chem. Phys., 2011,13, 16973-16986

Computational and spectroscopic studies of organic mixed-valence compounds: where is the charge?

M. Kaupp, M. Renz, M. Parthey, M. Stolte, F. Würthner and C. Lambert, Phys. Chem. Chem. Phys., 2011, 13, 16973 DOI: 10.1039/C1CP21772K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements