Issue 43, 2011

A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting

Abstract

Hybrid nanocomposite films of ITO-coated, self-assembled porous nanostructures of tungsten trioxide (WO3) were fabricated using electrochemical anodization and sputtering. The morphology and chemical nature of the porous nanostructures were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The photoelectrochemical (PEC) properties of WO3 porous nanostructures were studied in various alkaline electrolytes and compared with those of titania nanotubes. A new type of alkaline electrolyte containing a mixture of NaOH and KOH was proposed for the first time to the best of our knowledge and shown to improve the photocurrent response of the photoanodes. Here, we show that both the WO3 nanostructures and titania nanotubes (used for comparison) exhibit superior photocurrent response in the mixture of NaOH and KOH than in other alkaline electrolytes. The WO3 porous nanostructures suffered from surface corrosion resulting in a huge reduction in the photocurrent density as a function of time in the alkaline electrolytes. However, with a protective coating of ITO (100 nm), the surface corrosion of WO3 porous nanostructures reduced drastically. A tremendous increase in the photocurrent density of as much as 340% was observed after the ITO was applied to the WO3 porous nanostructures. The results suggest that the hybrid ITO/WO3 nanocomposites could be potentially coupled with titania nanotubes in a multi-junction PEC cell to expand the light absorption capability in the solar spectrum for water splitting to generate hydrogen.

Graphical abstract: A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting

Article information

Article type
Paper
Submitted
04 Aug 2011
Accepted
09 Sep 2011
First published
04 Oct 2011

Phys. Chem. Chem. Phys., 2011,13, 19553-19560

A novel tungsten trioxide (WO3)/ITO porous nanocomposite for enhanced photo-catalytic water splitting

H. Ishihara, G. K. Kannarpady, K. R. Khedir, J. Woo, S. Trigwell and A. S. Biris, Phys. Chem. Chem. Phys., 2011, 13, 19553 DOI: 10.1039/C1CP22856K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements