Issue 2, 2011

From diatoms to silica-based biohybrids

Abstract

This critical review shows that diatoms can be a source of inspiration for the synthesis of advanced nanostructured biohybrids. These single cell microalgae are living inside a porous silica shell called ‘frustule’. Mimicking this model, silica-based biohybrids have been produced via the so-called sol–gel process. Biomolecules such as proteins, enzymes or antibodies can be trapped within a silica matrix leading to hybrid biosensors and bioreactors. Whole cells remain viable and retain their metabolic activity leading to the formation of living biohybrids that offer new possibilities in the field of biotechnology and nanomedicine. Diatom frustules exhibit an incredible variety of sophisticated shapes; they can be used as 3D hierarchically structured materials for the realization of sensors, photonic devices or microfluidics. They can also be a model for the bio-templated synthesis of nanostructured materials. Diatom nanotechnology is becoming a new field of research where biologists and materials scientists are working together! (125 references)

Graphical abstract: From diatoms to silica-based biohybrids

Article information

Article type
Critical Review
Submitted
24 Sep 2010
First published
21 Dec 2010

Chem. Soc. Rev., 2011,40, 849-859

From diatoms to silica-based biohybrids

N. Nassif and J. Livage, Chem. Soc. Rev., 2011, 40, 849 DOI: 10.1039/C0CS00122H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements