An efficient route to construct a three-dimensional crystal structure is stacking of two-dimensional building blocks (2D-BBs). The crystal structures of potential thermoelectric compounds REOZnSb (RE = La, Ce, Pr, Nd) were virtually constructed from insulating [REO] and conducting [ZnSb] layers. Further optimizations performed by means of first-principles calculations show that REOZnSb should exhibit semimetal or narrow band-gap semiconductor behaviors, which is a prerequisite for high thermoelectric efficiency. The analysis of the electron localizability indicator for LaOZnSb reveals mostly covalent polar interactions between all four kinds of atoms. The electron density yields completely balanced ionic-like electronic formula La1.7+O1.2−Zn0.4+Sb0.9−. Furthermore, the samples of REOZnSb have been synthesized via solid-state reaction, and their crystal structures were confirmed by powder X-ray diffraction. The differences in cell parameters between the theoretically optimized and the experimental values are smaller than 2%. The temperature dependence of the magnetic susceptibility shows that LaOZnSb is diamagnetic above 40 K, whereas CeOZnSb, PrOZnSb and NdOZnSb are Curie–Weiss-type paramagnets. Electrical conductivity and Seebeck effect measurements indicate that REOZnSb are p-type semiconductors. A considerably high Seebeck coefficient and low thermal conductivity were obtained for pure LaOZnSb, but its low electrical conductivity leads to a small ZT. The high adjustability of the crystal structure as well as properties by optimization of the chemical composition in the compounds REOZnSb provide good prospects for achieving high thermoelectric efficiency.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?