Issue 4, 2011

820 mV open-circuit voltages from Cu2O/CH3CN junctions

Abstract

P-Type cuprous oxide (Cu2O) photoelectrodes prepared by the thermal oxidation of Cu foils exhibited open-circuit voltages in excess of 800 mV in nonaqueous regenerative photoelectrochemical cells. In contact with the decamethylcobaltocene+/0 (Me10CoCp2+/0) redox couple, cuprous oxide yielded open-circuit voltage, Voc, values of 820 mV and short-circuit current density, Jsc, values of 3.1 mA cm−2 under simulated air mass 1.5 illumination. The energy-conversion efficiency of 1.5% was limited by solution absorption and optical reflection losses that reduced the short-circuit photocurrent density. Spectral response measurements demonstrated that the internal quantum yield approached unity in the 400–500 nm spectral range, but poor red response, attributable to bulk recombination, lowered the overall efficiency of the cell. X-Ray photoelectron spectroscopy and Auger electron spectroscopy indicated that the photoelectrodes had a high-quality cuprous oxide surface, and revealed no observable photocorrosion during operation in the nonaqueous electrolyte. The semiconductor/liquid junctions thus provide a noninvasive method to investigate the energy-conversion properties of cuprous oxide without the confounding factors of deleterious surface reactions.

Graphical abstract: 820 mV open-circuit voltages from Cu2O/CH3CN junctions

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2010
Accepted
25 Nov 2010
First published
02 Feb 2011

Energy Environ. Sci., 2011,4, 1311-1318

820 mV open-circuit voltages from Cu2O/CH3CN junctions

C. Xiang, G. M. Kimball, R. L. Grimm, B. S. Brunschwig, H. A. Atwater and N. S. Lewis, Energy Environ. Sci., 2011, 4, 1311 DOI: 10.1039/C0EE00554A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements