We have recently shown how the excited-state wavepacket of a polyatomic molecule can be completely reconstructed from resonant coherent anti-Stokes Raman spectroscopy [Avisar and Tannor, Phys. Rev. Lett., 2011, 106, 170405]. The method assumes knowledge of the ground-state potential but not of any excited-state potential, however the latter can be computed once the excited-state wavepacket is known. The formulation applies to dissociative as well as bound excited potentials. We demonstrate the method on the Li2 molecule with its bound first excited-state as well as with a model dissociative excited state potential. Preliminary results are shown for a model two-dimensional molecular system. The calculations assume constant transition dipole moment (Condon approximation), δ-pulse excitation and a single excited-state potential, but we discuss the implications of removing these assumptions.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?