Abel inversion applied to a transient laser induced plasma: implications from plasma modeling
Abstract
We test the effects of non-uniformity, non-transparency, and non-stationarity of a laser-induced plasma on the results obtained by the Abel inversion method. The method is commonly used for obtaining spatially resolved emissivity of axially symmetric non-homogeneous radiating objects. Besides the axial symmetry, the plasma is assumed to be optically thin. As the method addresses a certain plasma state, the plasma is required to be stationary during measurements. It is difficult to satisfy the aforementioned conditions for transient laser induced plasmas. As such the plasmas are not stationary; they have steep gradients of thermodynamic parameters that rapidly vary during the plasma evolution. Therefore, any conclusion based on time-integrated measurements and the corresponding data processing should account for these effects. In this work, we use the collision-dominated plasma model to generate time- and spatially resolved synthetic