Issue 26, 2011

Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells

Abstract

Size-tunable mesoporous spherical TiO2 (MS TiO2) with a surface area of ∼110 m2 g−1 have been prepared through combination of “dilute mixing”-driven hydrolysis of titanium(iv) tetraethoxide and solvothermal treatment. The hierarchically structured MS TiO2 are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen sorption analysis. Using three different MS TiO2 (587, 757, and 1554 nm in diameter) as a scattering overlayer on a transparent nanocrystalline TiO2 film, bi-layered dye-sensitized solar cells (DSCs) have been fabricated. Since the MS TiO2 particles are comprised of ∼10 nm nanocrystallites that cluster together to form large secondary spheres, they can function as light scatterers without sacrificing the surface area for dye-uptake. As a result, the present MS TiO2-based cells perform a noticeable improvement in the overall efficiency: maximum 9.37% versus 6.80% for the reference cell made of a TiO2 nanocrystalline film. This extraordinary result is attributed to the dual effects of enhanced dye loading and light scattering.

Graphical abstract: Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
10 Mar 2011
Accepted
27 Apr 2011
First published
03 Jun 2011

J. Mater. Chem., 2011,21, 9582-9586

Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells

Y. Park, Y. Chang, B. Kum, E. Kong, J. Y. Son, Y. S. Kwon, T. Park and H. M. Jang, J. Mater. Chem., 2011, 21, 9582 DOI: 10.1039/C1JM11043H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements