Issue 19, 2011

Synthetic polyion-counterion transport systems in polymersomes and gels

Abstract

Transport across the membranes of polymersomes remains difficult in part due to the great thickness of the polymer bilayers. Here, we report that dynamic polyion-counterion transport systems are active in fluorogenic polymersomes composed of poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PDMS-PMOXA). These results suggest that counterion-activated calf-thymus DNA can act as cation carrier that moves not only across lipid bilayer and bulk chloroform membranes but also across the “plastic” membranes of polymersomes. Compared to egg yolk phosophatidylcholine (EYPC) lipsosomes, activities and activator scope in PDMS-PMOXA polymersomes are clearly reduced. Embedded in agar gel matrices, fluorogenic PDMS-PMOXA polymersomes respond reliably to polyion-counterion transporters, with high contrast, high stability and preserved selectivity. Compared to standard EYPC liposomes, it cannot be said that PDMS-PMOXA polymersomes are better. However, they are different, and this difference could be interesting for the development of sensing devices.

Graphical abstract: Synthetic polyion-counterion transport systems in polymersomes and gels

Supplementary files

Article information

Article type
Paper
Submitted
26 May 2011
Accepted
11 Jul 2011
First published
17 Aug 2011

Org. Biomol. Chem., 2011,9, 6623-6628

Synthetic polyion-counterion transport systems in polymersomes and gels

J. Montenegro, J. Braun, O. Fischer-Onaca, W. Meier and S. Matile, Org. Biomol. Chem., 2011, 9, 6623 DOI: 10.1039/C1OB05835E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements