Issue 19, 2011

Light-driven conformational regulation of human telomeric G-quadruplex DNA in physiological conditions

Abstract

Human telomeric G-quadruplexes have raised broad interest not just due to their involvement in the regulation of gene expressions and telomerase activities but also because of their application in nanoarchitectures. Herein, three azobenzene derivatives 13 were synthesized with different substituent groups and their photo-isomerization properties were investigated by UV/Vis spectroscopy. Then circular dichroism spectroscopy (CD), fluorescence experiments and native-gel electrophoresis were performed to evaluate their capabilities of conformational photo-regulation both in the absence and presence of metal ions. The results suggested that the compounds synthesized can successfully regulate the conformation of human telomeric G-quadruplex DNA in K+ conditions to some extent. This work will initiate the possibility for the design and intriguing application of light-induced switching to photoregulate the conformation of G-quadruplex DNA under physiological conditions, providing a possible pathway to control G-quadruplex conformation in biological applications and also expanding the potential use of G-quadruplexes in nanomachines.

Graphical abstract: Light-driven conformational regulation of human telomeric G-quadruplex DNA in physiological conditions

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
10 Jun 2011
Accepted
27 Jun 2011
First published
27 Jun 2011

Org. Biomol. Chem., 2011,9, 6639-6645

Light-driven conformational regulation of human telomeric G-quadruplex DNA in physiological conditions

X. Xing, X. Wang, L. Xu, Y. Tai, L. Dai, X. Zheng, W. Mao, X. Xu and X. Zhou, Org. Biomol. Chem., 2011, 9, 6639 DOI: 10.1039/C1OB05939D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements