Issue 1, 2011

Ultrafast infrared chemical imaging of live cells

Abstract

Mid-infrared (mid-IR) spectroscopy provides a unique chemical fingerprint of biomaterials, including DNA and proteins, from single molecules to highly organised structures and, ultimately, to live cells and tissues. However, acquiring good signal–to–noise mid-IR spectroscopic images, at the cellular level, typically involves a synchrotron, with imaging times of order of minutes. Here we use a new laser-based table-top IR spectroscopic micro-imaging system, to obtain vibrational fingerprint signatures of living human ovarian cancer cells at a diffraction limited spatial resolution, and at a spectral resolution (< 20 cm−1) sufficient to map out the spatial distributions of chemical moieties inside the cell itself. The bright laser pulses give very high signal–to–noise images, and ∼100 psec image acquisition times that are roughly 1011 times faster than current mid-IR spectroscopic imaging techniques. The imaging method is quantitative, non-phototoxic, marker-free and easily fast enough to “freeze” moving, living specimens. It can be applied to a range of cell-level biochemical processes, and we believe it could impact on the fields of drug action, cell physiology, pathology and disease as a whole.

Graphical abstract: Ultrafast infrared chemical imaging of live cells

Article information

Article type
Edge Article
Submitted
03 Aug 2010
Accepted
06 Sep 2010
First published
01 Oct 2010

Chem. Sci., 2011,2, 107-111

Ultrafast infrared chemical imaging of live cells

H. Amrania, A. P. McCrow, M. R. Matthews, S. G. Kazarian, M. K. Kuimova and C. C. Phillips, Chem. Sci., 2011, 2, 107 DOI: 10.1039/C0SC00409J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements