Issue 3, 2011

Metal-binding properties of Hpn from Helicobacter pylori and implications for the therapeutic activity of bismuth

Abstract

Nickel is of particular importance to Helicobacter pylori in part because it acts as a cofactor of urease, which is critical to the survival of H. pylori. In this study the nickel storage, histidine-rich protein Hpn from H. pylori was converted into a Ni2+ probe by inserting it between two fluorescence resonance energy transfer (FRET) partners, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). The resulting construct, Hpn-FRET, exhibited a change in FRET upon the binding of Ni2+. Hpn-FRET has a moderate selectivity for Ni2+; it also responds to Zn2+ and Co2+ but not to other biometals. Competition experiments between Ni2+ and other metals plus the measured Kd values for Zn2+ and Ni2+ establish the selectivity order for Hpn-FRET as Zn2+ > Ni2+ > Co2+ ≫ other biometals. Bismuth is widely used as a therapeutic agent against H. pylori, and Hpn has been suggested as one of the possible targets. The dissociation constant of Bi3+ to Hpn-FRET was measured to be 6.19 × 10−5 M. Further experiments using Hpn-FRET in E. coli indicate that Hpn-FRET responds to Bi3+ but not to Ni2+ and Zn2+ inside E. coli. The result shows that unlike Ni2+ and Zn2+, which are tightly regulated in most bacteria, available Bi3+ can reach high micromolar levels inside E. coli.

Graphical abstract: Metal-binding properties of Hpn from Helicobacter pylori and implications for the therapeutic activity of bismuth

Supplementary files

Article information

Article type
Edge Article
Submitted
04 Aug 2010
Accepted
15 Oct 2010
First published
16 Nov 2010

Chem. Sci., 2011,2, 451-456

Metal-binding properties of Hpn from Helicobacter pylori and implications for the therapeutic activity of bismuth

S. V. Wegner, E. Ertem, M. Sunbul and C. He, Chem. Sci., 2011, 2, 451 DOI: 10.1039/C0SC00411A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements