Issue 1, 2011

Catalytic nitrene transfer by a zirconium(iv) redox-active ligand complex

Abstract

Nitrene transfer catalyzed by a d0zirconium(IV) complex with a redox-active ligand is reported. The redox-active ligand, bis(2-isopropylamido-4-methoxyphenyl)amide ([NNNcat]3), afforded zirconium(IV) complexes, [NNNcat]ZrClL2 (1a, L = THF; 1b, L = CNtBu; 1c, L = py), upon reaction with ZrCl4(THF)2. Complex 1a was oxidized by one and two electrons using PhICl2, affording [NNNsq•]ZrCl2(THF) (2) and [NNNq]ZrCl3 (3), respectively. Aryl azides reacted with 1a to afford zirconium imide dimers, including the crystallographically characterized species {[NNNq]ZrCl(μ2-p-NC6H4tBu)}2 (4). The formation of 4 is the result of the addition of an aryl nitrene to the zirconium(IV) metal center. When 1b was reacted with organoazides, the dimer was not observed, but rather the nitrene group was transferred to the isonitrile to form a carbodiimide. In the presence of excess organoazide and isonitrile, catalytic carbodiimide formation occurred, showing that a redox-active ligand and a d0 metal center can work in concert to effect nitrene group transfer reactivity.

Graphical abstract: Catalytic nitrene transfer by a zirconium(iv) redox-active ligand complex

Supplementary files

Article information

Article type
Edge Article
Submitted
04 Aug 2010
Accepted
17 Sep 2010
First published
27 Oct 2010

Chem. Sci., 2011,2, 166-169

Catalytic nitrene transfer by a zirconium(IV) redox-active ligand complex

A. I. Nguyen, R. A. Zarkesh, D. C. Lacy, M. K. Thorson and A. F. Heyduk, Chem. Sci., 2011, 2, 166 DOI: 10.1039/C0SC00414F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements