Nucleation of colloidal crystals on configurable seed structures
Abstract
Nucleation is an important stage in the growth of crystals. During this stage, the structure and orientation of a crystal are determined. However, short time- and length-scales make nucleation poorly understood. Micrometer-sized colloidal particles form an ideal model system to study nucleation due to more experimentally accessible time- and length-scales and the possibility to manipulate them individually. Here we report experiments and simulations on nucleation in the bulk of a hard-sphere fluid, initiated by seed structures configured using optical tweezers. We find that the defect topology of the critical