Issue 70, 2012

Spectroscopic probes with changeable π-conjugated systems

Abstract

Spectroscopic probes have been extensively investigated and used widely in many fields because of their powerful ability to improve analytical sensitivity, and to offer greater temporal and spatial resolution (in some cases a molecule event may be visualized by the naked eye). So far, different photophysical mechanisms, such as charge transfer, photo-induced electron transfer and fluorescent resonance energy transfer, have been employed to develop various spectroscopic probes with superior properties. However, these photophysical mechanisms depend on the energy levels of molecular orbitals, which are usually difficult to accurately determine. This would lead to the poor prediction of analytical performance of the designed probe. Instead, the change of π-conjugated systems induced by chemical reactions is often accompanied by a distinct alteration in spectroscopic signal, which is more predictable and is of high signal/background ratio. This mechanism can serve as an effective measure for developing excellent spectroscopic probes, but to our knowledge, has not been systematically summarized. In this feature article, we review the development of spectroscopic probes with changeable π-conjugated systems, which is catalogued according to the fluorochromes: fluorescein, rhodamine, spiropyran, squaraine, coumarin, cyanine, etc. Two main strategies for constructing these spectroscopic probes, including ring-closing reaction and nucleophilic addition reaction, are summarized, and the merits and limitations of the probes are discussed.

Graphical abstract: Spectroscopic probes with changeable π-conjugated systems

Article information

Article type
Feature Article
Submitted
10 May 2012
Accepted
21 Jun 2012
First published
21 Jun 2012

Chem. Commun., 2012,48, 8732-8744

Spectroscopic probes with changeable π-conjugated systems

W. Shi and H. Ma, Chem. Commun., 2012, 48, 8732 DOI: 10.1039/C2CC33366J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements