Issue 86, 2012

Rare earth metaloxazoline complexes in asymmetric catalysis

Abstract

Polydentate oxazolines have been employed as highly effective stereodirecting ligands for asymmetric catalysis with metals from across most of the periodic table. Despite their highly versatile coordination chemistry, the use of these ligands tends to be polarised towards late transition metals; their use with early transition metals and the f-elements is significantly less developed. This current article aims to review the coordination chemistry and catalytic applications of Group 3 and lanthanide complexes supported by ligands possessing oxazoline moieties. Oxazoline-containing ligands were first employed in molecular lanthanide catalysis as early as 1997, yet there is still a significant void in the chemical literature in this respect. The ligands generally employed include bis(oxazolinyl)methane (“BOX”), 2,6-bis(oxazolinyl)pyridine (“pybox”), 1,1,1-tris(oxazolinyl)ethane (“trisox”), and others. The complexes are employed in a wide-range of catalytic applications, especially in Lewis acid catalysis, but also in the stereospecific polymerisation of olefins.

Graphical abstract: Rare earth metal oxazoline complexes in asymmetric catalysis

Article information

Article type
Feature Article
Submitted
12 Jul 2012
Accepted
21 Aug 2012
First published
17 Sep 2012

Chem. Commun., 2012,48, 10587-10599

Rare earth metal oxazoline complexes in asymmetric catalysis

B. D. Ward and L. H. Gade, Chem. Commun., 2012, 48, 10587 DOI: 10.1039/C2CC34997C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements