In combination with EtAlCl2 (Mo : Al = 1 : 15) the imido complexes [MoCl2(NR)(NR′)(dme)] (R = R′ = 2,6-Pri2–C6H3 (1); R = 2,6-Pri2–C6H3, R′ = But (3); R = R′ = But (4); dme = 1,2-dimethoxyethane) and [Mo(NHBut)2(NR)2] (R = 2,6-Pri2–C6H3 (5); R = But (6)) each show moderate TON, activity, and selectivity for the catalytic dimerisation of ethylene, which is influenced by the nature of the imido substituents. In contrast, the productivity of [MoCl2(NPh)2(dme)] (2) is low and polymerisation is favoured over dimerisation. Catalysis initiated by complexes 1–4 in combination with MeAlCl2 (Mo : Al = 1 : 15) exhibits a significantly lower productivity. Reaction of complex 5 with EtAlCl2 (2 equiv.) gives rise to a mixture of products, while addition of MeAlCl2 affords [MoMe2(N–2,6-Pri2–C6H3)2]. Treatment of 6 with RAlCl2 (2 equiv.) (R = Me, Et) yields [Mo({μ-N–But}AlCl2)2] (7) in both cases. Imido derivatives 1 and 3 react with Me3Al and MeAlCl2 to form the bimetallic complexes [MoMe2(N{R}AlMe2{μ-Cl})(NR′)] (R = R′ = 2,6-Pri2–C6H3 (8); R = 2,6-Pri2–C6H3, R′ = But (10)) and [MoMe2(N{R}AlCl2{μ-Cl})(NR′)] (R = R′ = 2,6-Pri2–C6H3 (9); R = 2,6-Pri2–C6H3, R′ = But (11)), respectively. Exposure of complex 8 to five equivalents of thf or PMe3 affords the adducts [MoMe2(N–2,6-Pri2–C6H3)2(L)] (L = thf (12); L = PMe3 (13)), while reaction with NEt3 (5 equiv.) yields [MoMe2(N–2,6-Pri2–C6H3)2]. The molecular structures of complexes 5, 9 and 11 have been determined.