Issue 45, 2012

Self-ordering of metallogrid complexes via directed hydrogen-bonding

Abstract

Reaction of imidazole aldehydes with dihydrazino derivatives of 2-phenylpyrimidine provides a family of bis(acylhydrazone) ligands which form [2 × 2] metallogrid complexes with transition metal ions including Fe(II), Co(II), Cu(II) and Zn(II). The free ligands show H-bonding interactions, both donor and acceptor, largely involving the imidazole units, while binding of the metal ions occupies all the acceptor sites and leaves only the pyrrolic-NH site as an H-bond donor, although its deprotonation by a strong base can regenerate an acceptor. These H-bonding interactions have been studied by 1H NMR spectroscopy in solution and in the solid state by means of several crystal structure determinations. The Fe(II) grids appear to be exclusively high-spin species over a wide temperature range in solution. In the solid state various forms of spin-crossover behaviour can be observed between 1.8 and 300 K, which has been rationalised in terms of the varied forms of hydrogen-bonding possible in the crystalline state.

Graphical abstract: Self-ordering of metallogrid complexes via directed hydrogen-bonding

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2012
Accepted
05 Sep 2012
First published
05 Sep 2012

Dalton Trans., 2012,41, 13848-13855

Self-ordering of metallogrid complexes via directed hydrogen-bonding

A. R. Stefankiewicz, G. Rogez, J. Harrowfield, A. N. Sobolev, A. Madalan, J. Huuskonen, K. Rissanen and J. Lehn, Dalton Trans., 2012, 41, 13848 DOI: 10.1039/C2DT31384G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements