Issue 43, 2012

Minimizing side reactions in chemoenzymatic dynamic kinetic resolution: organometallic and material strategies

Abstract

Chemoenzymatic dynamic kinetic resolution (DKR) of rac-1-phenyl ethanol into R-1-phenylethanol acetate was investigated with emphasis on the minimization of side reactions. The organometallic hydrogen transfer (racemization) catalyst was varied, and this was observed to alter the rate and extent of oxidation of the alcohol to form ketone side products. The performance of highly active catalyst [(pentamethylcyclopentadienyl)IrCl2(1-benzyl,3-methyl-imidazol-2-ylidene)] was found to depend on the batch of lipase B used. The interaction between the bio- and chemo-catalysts was reduced by employing physical entrapment of the enzyme in silica using a sol–gel process. The nature of the gelation method was found to be important, with an alkaline method preferred, as an acidic method was found to initiate a further side reaction, the acid catalyzed dehydration of the secondary alcohol. The acidic gel was found to be a heterogeneous solid acid.

Graphical abstract: Minimizing side reactions in chemoenzymatic dynamic kinetic resolution: organometallic and material strategies

Article information

Article type
Paper
Submitted
03 Aug 2012
Accepted
06 Sep 2012
First published
07 Sep 2012
This article is Open Access

Dalton Trans., 2012,41, 13423-13428

Minimizing side reactions in chemoenzymatic dynamic kinetic resolution: organometallic and material strategies

C. L. Pollock, K. J. Fox, S. D. Lacroix, J. McDonagh, P. C. Marr, A. M. Nethercott, A. Pennycook, S. Qian, L. Robinson, G. C. Saunders and A. C. Marr, Dalton Trans., 2012, 41, 13423 DOI: 10.1039/C2DT31781H

This is an Open Access article. The full version of this article can be posted on a website/blog, posted on an intranet, photocopied, emailed, distributed in a course pack or distributed in Continuing Medical Education (CME) materials provided that it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements