Issue 7, 2012

Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum–oxo catalyst

Abstract

We recently reported the catalytic generation of hydrogen from water mediated through the in situ reduction of the molybdenum(IV)–oxo complex [(PY5Me2)MoO]2+ (1; PY5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine) at a mercury electrode. To gain further insight into this unique molecular motif for hydrogen production, we have now examined the competence of this complex for the catalytic reduction of protons on an alternative electrode material. Herein, we demonstrate the ability of the molybdenum–oxo complex 1 to reduce protons at a glassy carbon electrode in acidic organic media, where the active catalyst is shown to be diffusing freely in solution. Cyclic and rotating disk voltammetry experiments reveal that three reductive electrochemical processes precede the catalytic generation of hydrogen, which occurs at potentials more negative than −1.25 V vs. SHE. Gas chromatographic analysis of the bulk electrolysis cell headspace confirms that hydrogen is generated at a Faradaic efficiency of 99%. Under pseudo-first order conditions with an acid-to-catalyst ratio of >290, a rate constant of 385 s−1 is calculated for the reduction of acetic acid in acetonitrile. Taken together, these data show that metal–oxo complex 1 is a competent molecular motif for catalytic generation of hydrogen from protons under soluble and diffusion-limited conditions.

Graphical abstract: Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum–oxo catalyst

Supplementary files

Article information

Article type
Paper
Submitted
29 Feb 2012
Accepted
22 Mar 2012
First published
19 Apr 2012

Energy Environ. Sci., 2012,5, 7762-7770

Electrochemical generation of hydrogen from acetic acid using a molecular molybdenum–oxo catalyst

V. S. Thoi, H. I. Karunadasa, Y. Surendranath, J. R. Long and C. J. Chang, Energy Environ. Sci., 2012, 5, 7762 DOI: 10.1039/C2EE21519E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements