For the first time, a facile calcination method derived from the resorcinol and formaldehyde reaction was used to prepare monodisperse, carbon doped single crystal TiO2 nanorod spheres instead of the conventional hydrothermal method. The spheres are made of single crystal TiO2 nanorods with a large percentage (95%) of rutile (110) facets, which show an interesting hierarchical structure, favoring the improvement of photocatalytic activity. The TiO2 nanorod spheres exhibit a higher photodegradation ability of AO 7 and phenol in comparison to commercial TiO2 P25. In a methanol–water sacrificial reagent system in the presence of Cu2+, the TiO2 nanorod spheres demonstrate strong ability to simultaneously recover Cu2+ and generate H2 under UV light irradiation. Because of the comprehensive effects from its uniform exposure of highly active (110) facets, carbon doping, better light absorbing ability, larger specific surface area, and suppression of the recombination of electrons and holes, the TiO2 nanorod spheres display a higher H2 generation rate than most already reported semiconductor catalysts. More importantly, the TiO2 nanorod spheres are promising for clean energy generation and contaminant elimination owing to the fact they can be facilely prepared in a large-scale manner for practical applications.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?