Three-dimensional porous nano-Ni/Fe3O4 composite film: enhanced electrochemical performance for lithium-ion batteries†
Abstract
A novel 3D porous nano-Ni/Fe3O4 composite film is prepared by electrodepositing 3D porous nano-Ni onto a Cu current collector followed by electrochemical plating of Fe3O4 nanoflakes. As an anode material for lithium-ion batteries, the resultant 3D porous nano-Ni/Fe3O4 composite film shows an improved initial columbic efficiency of 86.0%, high capacity and good cycle stability (951.9 mA h g−1 at 1 C up to 50 cycles), as well as enhanced rate capability. This unique electrode configuration possesses the following features: high Fe3O4− electrolyte contact area, direct contact between each naonflake and its ‘own’ current collector of nano-Ni, fast Li+ diffusion and better accommodation of volume change. It suggests that the 3D porous nano-Ni/Fe3O4 composite film, synthesized by the two-step electrodeposition strategy, is a promising anode material for high energy-density lithium-ion batteries.