Issue 3, 2012

Lab on a chip phased-array MR multi-platform analysis system

Abstract

We present a lab on a chip (LOC) compatible modular platform for magnetic resonance (MR)-based investigation of sub-millimetre samples. The platform combines the advantages offered respectively by microcoils (high resolution at the microscale) and macroscopic surface coils (large field of view) as MR-detectors and consists of a phased array of microcoils (PAMs) providing a flat MR-sensitive area of 18.3 mm2 with a B0-field uniformity better than 0.25 ppm in the sensor centre area. We demonstrate both high-resolution magnetic resonance imaging (MRI) and NMR spectroscopy using this platform. To demonstrate the application for biological samples, we report MR imaging of fish oocytes with an in-plane resolution of 30 × 30 μm2 and a contrast to noise ratio of 10 for a scan time of only 13 min 39 s. We have also demonstrated high-resolution spectroscopy of a water phantom achieving 11 ppb (4.5 Hz at 400 MHz) linewidth and an SNR of 28 for only 12 s scan time. State of the art automatic wire bonding technology in conjunction with MEMS techniques has been employed to manufacture the platform with potential applications in MR-investigation of planar samples.

Graphical abstract: Lab on a chip phased-array MR multi-platform analysis system

Article information

Article type
Paper
Submitted
30 Jun 2011
Accepted
05 Dec 2011
First published
23 Dec 2011

Lab Chip, 2012,12, 495-502

Lab on a chip phased-array MR multi-platform analysis system

O. G. Gruschke, N. Baxan, L. Clad, K. Kratt, D. von Elverfeldt, A. Peter, J. Hennig, V. Badilita, U. Wallrabe and J. G. Korvink, Lab Chip, 2012, 12, 495 DOI: 10.1039/C2LC20585H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements