Issue 42, 2012

Synthesis and enhanced DNA cleavage activities of bis-tacnorthoamide derivatives

Abstract

A new metal-free DNA cleaving reagent, bis-tacnorthoamide derivative 1 with two tacnorthoamide (tacnoa) units linked by a spacer containing anthraquinone, has been synthesized from triazatricyclo[5.2.1.04,10]decane and characterized by NMR and mass spectrometry. For comparison, the corresponding compounds mono-tacnorthoamide derivative 2 with one tacnorthoamide unit and 6 with two tacnorthoamide units linked by an alkyl (1,6-hexamethylene) spacer without anthraquinone have also been synthesized. The DNA-binding property investigated via fluorescence and CD spectroscopy suggests that compounds 1 and 2 have an intercalating DNA binding mode, and the apparent binding constants of 1, 2 and 6 are 1.3 × 107 M−1, 0.8 × 107 M−1 and 8 × 105 M−1, respectively. Agarose gel electrophoresis was used to assess plasmid pUC19 DNA cleavage activity promoted by 1, 2, 6 and parent tacnoa under physiological conditions, which gives rate constants kobs of 0.2126 ± 0.0055 h−1, 0.0620 ± 0.0024 h−1, 0.040 ± 0.0007 h−1 and 0.0043 ± 0.0002 h−1, respectively. The 50-fold and 15-fold rate acceleration over parent tacnoa is because of the anthraquinone moiety of compound 1 or 2 intercalating into DNA base pairs via a stacking interaction. Moreover, DNA cleavage reactions promoted by compound 1 give 5.3-fold rate acceleration over compound 6, which further demonstrates that the introduction of anthraquinone results in a large enhancement of DNA cleavage activity. In particular, DNA cleavage activity promoted by 1 bearing two tacnoa units is 3.3 times more effective than 2 bearing one tacnoa unit and the DNA cleavage by compound 1 was achieved effectively at a relatively low concentration (0.03 mM). This dramatic rate acceleration suggests the cooperative catalysis of the two positively charged tacnoa units in compound 1. The radical scavenger inhibition study and ESI-MS analysis of bis(2,4-dinitrophenyl) phosphate (BDNPP) and adenylyl(3′-5′)phosphoadenine (APA) cleavage in the presence of compound 1 suggest the cleavage mechanism would be via a hydrolysis pathway by cleaving the phosphodiester bond of DNA.

Graphical abstract: Synthesis and enhanced DNA cleavage activities of bis-tacnorthoamide derivatives

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2012
Accepted
25 Aug 2012
First published
29 Aug 2012

Org. Biomol. Chem., 2012,10, 8484-8492

Synthesis and enhanced DNA cleavage activities of bis-tacnorthoamide derivatives

L. Wei, Y. Shao, M. Zhou, H. Hu and G. Lu, Org. Biomol. Chem., 2012, 10, 8484 DOI: 10.1039/C2OB25743B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements