Issue 3, 2012

Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2electrode

Abstract

The effect of the electrodeposition temperature on the electrochemical performance of Ni(OH)2 electrode was investigated in this report. Ni(OH)2 was electrodeposited directly on nickel foam at different temperatures. The crystalline structure, morphology and specific surface area of the prepared Ni(OH)2 were characterized by X-ray powder diffraction (XRD), field emission scanning electronic microscopy (FESEM) and Brunauer–Emmett–Teller (BET). Electrochemical techniques such as cyclic voltammetry (CV), chronopotentiometry, and electrochemical impedance spectra (EIS) were carried out to systematically study the electrochemical performance of various Ni(OH)2 electrodes in 1 M KOH electrolyte. The results demonstrated that the electrodeposition temperature had obviously affected the properties of the Ni(OH)2. A pure α-Ni(OH)2 phase could be observed at low temperature. When the temperature increased to 65 °C, the β-Ni(OH)2 phase together with α-Ni(OH)2 phase were present. Moreover, the sample synthesized at 65 °C possessed a porous honeycomb-like microstructure and the corresponding specific capacitance was up to 3357 F g−1 at a charge–discharge current density of 4 A g−1, which suggested its potential application as an electrode material for supercapacitors.

Graphical abstract: Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2 electrode

Article information

Article type
Paper
Submitted
19 Aug 2011
Accepted
14 Oct 2011
First published
05 Dec 2011

RSC Adv., 2012,2, 1074-1082

Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2 electrode

Y. Wang, D. Zhao, Y. Zhao, C. Xu and H. Li, RSC Adv., 2012, 2, 1074 DOI: 10.1039/C1RA00613D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements