Issue 10, 2012

Structural properties of amorphous diamond-like carbon: percolation, cluster, and pair correlation analysis

Abstract

A detailed atomistic model of amorphous diamond-like carbon was developed combining experimental neutron scattering data (K. W. R. Gilkes, P. H. Gaskell and J. Robertson, Phys. Rev. B, 1995, 51, 12303) with the hybrid reverse Monte Carlo method. From the experimentally consistent nanoscale model of the disordered tetrahedral carbon we computed various properties, including: binding energy distribution, neighbor distribution function, bond angle distribution, cluster size distributions for different C–C bond lengths, and percolation threshold. Analysis of microscopic configurations revealed that the network structure of the studied amorphous diamond-like carbon lacks any graphitic fragments (i.e., regular hexagons with a 120° C–C–C bond angle). We found that for the assumed C–C bond length ≤ 1.42 Å (i.e., sp2 hybridization), the carbon network is poorly connected with a 70% contribution from isolated carbon atoms. The percolation threshold corresponds to a C–C bond length ≤ 1.52 Å, which is close to 1.54 Å (i.e., C–C bond length in perfect diamond). This finding is consistent with experimental high levels of tetrahedral bonding (i.e., sp3 hybridization) reported for high density tetrahedral amorphous carbons (i.e., sp3 fraction of 80–85%). Thus, we concluded that the HRMC method complemented with cluster size analysis and determination of percolation threshold is a promising methodology in studies of ill-defined carbonaceous materials.

Graphical abstract: Structural properties of amorphous diamond-like carbon: percolation, cluster, and pair correlation analysis

Article information

Article type
Paper
Submitted
31 Oct 2011
Accepted
26 Feb 2012
First published
28 Mar 2012

RSC Adv., 2012,2, 4292-4298

Structural properties of amorphous diamond-like carbon: percolation, cluster, and pair correlation analysis

P. Kowalczyk, P. A. Gauden and A. P. Terzyk, RSC Adv., 2012, 2, 4292 DOI: 10.1039/C2RA00985D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements