Issue 9, 2012

Remotely addressable magnetic composite micropumps

Abstract

Remotely and selectively turning on and off the magnetization of many micro-scale magnetic actuators could be a great enabling feature in fields such as microrobotics and microfluidics. We present an array of addressable 800 × 800 × 75 μm3 micropumps made from a composite material whose net magnetic moment can be selectively turned on or off by application of a large magnetic field pulse. The material is made from a mixture of micron-scale neodymium-iron-boron and ferrite particles, and can be formed into arbitrary actuator shapes using a simple molding procedure. By selectively controlling the orientation of each of an array of micro-actuators prior to the application of the field pulse, the magnetic on/off state of each can be controlled independently. The micropumps are actuated by rotating magnetic fields up to 12 kA m−1 in strength to pump liquid through 100 μm fluid channels. A distinct transition between the on and off states is seen by application of pulsed magnetic fields of about 240 kA m−1 in strength. As a demonstration, we show addressable on/off control of two micropumps and five simple spinning magnetic microactuators, with potential applications for lab-on-a-chip type fluidic devices.

Graphical abstract: Remotely addressable magnetic composite micropumps

Supplementary files

Article information

Article type
Paper
Submitted
19 Dec 2011
Accepted
14 Feb 2012
First published
15 Feb 2012

RSC Adv., 2012,2, 3850-3856

Remotely addressable magnetic composite micropumps

E. Diller, S. Miyashita and M. Sitti, RSC Adv., 2012, 2, 3850 DOI: 10.1039/C2RA01318E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements