Issue 13, 2012

Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters

Abstract

In this work we study the stabilities of high-symmetry AuN, PdN and (AuPd)N clusters, for N < 1500, using mathematical constructs, a semi-empirical potential with two different parameter sets, and a quasi-Newtonian minimisation technique. For PdN clusters, both parameter sets tested result in preferences for icosahedral (Ih) structures for N < 1000 over other high-symmetry 12-vertex geometries; for AuN clusters we find a tendency towards face-centred cubic (FCC) structures at values of N lower than seen for PdN: parameter set I of Cleri and Rosato [Cleri and Rosato, Phys. Rev. B, 1993, 48, 22] gave a transition at N ≈ 650 to the I-Dh, whilst for parameter set II of Baletto et al. [Baletto et al., J. Chem. Phys., 2002, 116, 3856] this value was lower still. For (AuPd)N clusters we found that the preferred arrangement is (PdcoreAushell)N, with thin (monolayer) surface coverings of Au being most energetically favourable compared to the homogeneous clusters; however for parameter set II multiple layers of Au lead to energetic instability. (AucorePdshell)N clusters are not energetically favourable with thin coatings of Pd, however as the shell coating thickens so the stability improves. Ih structures are unfavourable compared to the Ino-decahedron and cuboctahedron for (AucorePdshell)N, whereas the FCC-type structures are strongly preferred for (PdcoreAushell)N. Overall, the strong tendency towards core–shell segregation is emphasised for parameter set I more than II, agreeing with previous work on smaller (AuPd)N clusters.

Graphical abstract: Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters

Supplementary files

Article information

Article type
Paper
Submitted
20 Feb 2012
Accepted
19 Apr 2012
First published
20 Apr 2012

RSC Adv., 2012,2, 5863-5869

Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters

A. J. Logsdail and R. L. Johnston, RSC Adv., 2012, 2, 5863 DOI: 10.1039/C2RA20309J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements