Issue 22, 2012

Fe2O3 nanocluster-decorated graphene as O2electrode for high energy Li–O2 batteries

Abstract

Fe2O3 nanocluster-decorated graphene (Fe2O3/graphene) hybrids with controlled contents of Fe2O3 were prepared by a facile electrochemical process. These Fe2O3/graphene hybrids were tested as O2 electrodes for Li–O2 batteries, which exhibited enhanced discharge capacities as compared to that of a pure graphene based O2 electrode, e.g. the Fe2O3/graphene electrode with 29.0 wt% of Fe2O3 delivered a discharge capacity of 8290 mA h g−1 and a round-trip efficiency of 65.9% as compared to 5100 mA h g−1 and 57.5% for a pure graphene electrode. The excellent electrochemical properties of Fe2O3/graphene as an O2 electrode is ascribed to the combination of the fast kinetics of electron transport provided by the graphene sheets and the high electrocatalytic activity for O2 reduction provided by the Fe2O3.

Graphical abstract: Fe2O3 nanocluster-decorated graphene as O2 electrode for high energy Li–O2 batteries

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2012
Accepted
19 Jul 2012
First published
26 Jul 2012

RSC Adv., 2012,2, 8508-8514

Fe2O3 nanocluster-decorated graphene as O2 electrode for high energy Li–O2 batteries

W. Zhang, Y. Zeng, C. Xu, H. Tan, W. Liu, J. Zhu, N. Xiao, H. H. Hng, J. Ma, H. E. Hoster, R. Yazami and Q. Yan, RSC Adv., 2012, 2, 8508 DOI: 10.1039/C2RA20757E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements