Issue 24, 2012

Effect of defects on Young's modulus of graphene sheets: a molecular dynamics simulation

Abstract

The effect of defects including vacancy and Stone–Wales (SW) defects on the Young's modulus of graphene sheets is investigated using molecular dynamic (MD) simulations. The simulations show that the presence of defects reduces the Young's modulus of graphene sheets and Young's modulus decreases with increasing degree of defects. In addition, the vacancy defects bring about a decrease in the Young's modulus, but their reconstruction is an important factor in stabilizing the modulus. Furthermore, we explore the Young's modulus of graphene with defects functionalized by hydrogen atoms and find that the hydrogenation of vacancy defects can increase the Young's modulus of the defective graphene but the hydrogenation of SW defects has the opposite effect.

Graphical abstract: Effect of defects on Young's modulus of graphene sheets: a molecular dynamics simulation

Article information

Article type
Paper
Submitted
20 Jun 2012
Accepted
27 Jul 2012
First published
30 Jul 2012

RSC Adv., 2012,2, 9124-9129

Effect of defects on Young's modulus of graphene sheets: a molecular dynamics simulation

N. Jing, Q. Xue, C. Ling, M. Shan, T. Zhang, X. Zhou and Z. Jiao, RSC Adv., 2012, 2, 9124 DOI: 10.1039/C2RA21228E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements