Antiferromagnetic coupling across a tetrametallic unit through noncovalent interactions†
Abstract
Three paramagnetic heterobimetallic lantern complexes of the form [PtM(tba)4(OH2)] (M = Fe, 1; Co, 2; Ni, 3; tba = thiobenzoate) have been prepared in a single-step, bench-top procedure. In all three cases, a lantern structure with Pt–M bonding is observed in solution and in the solid state. Compound 1 is a monomer whereas 3 exists as a dimer in the solid state via a Pt⋯Pt metallophilic interaction. Compound 2 has been characterized in forms with (2a, purple) and without (2b, yellow) Pt⋯Pt metallophilic interactions. The dimers 2a (J = −10 cm−1, based on the spin Hamiltonian Ĥ = −2J(SA·SB)) and 3 (J = −60 cm−1) exhibit antiferromagnetic coupling between the two first-row metal ions in the solid state via a Pt⋯Pt non-covalent metallophilic interaction. The electronic structure of C4v [PtM(tba)4], C2 [PtM(tba)4(OH2)], (M = Fe, Co, Ni) and D2 symmetry [PtM(tba)4(OH2)]2 M = Co, Ni, units have been studied with DFT calculations, confirming the relative spin-state energies observed and the antiferromagnetic exchange pathway through four dz2 orbitals. The compounds 2a and 3 are the first examples of antiferromagnetic coupling through an unbridged M⋯M contact.