Issue 11, 2012

Metallosupramolecular complex targeting an α/β discordant stretch of amyloid β peptide

Abstract

The accumulation of amyloid β-peptide (Aβ) is one of the pathological hallmarks of Alzheimer's disease (AD). Developing Aβ amyloid inhibitors has received much attention. Most reported Aβ inhibitors are small organic molecules or peptides. Here we use a cell-based novel Aβ–enhanced cyan fluorescent protein (ECFP) fluorescent fusion inhibitor screen system, biochemical and biophysical approaches and in vivo studies to identify two zinc-finger-like triple-helical metallo-supramolecular cylinders, [Ni2L3]4+ and [Fe2L3]4+, that can strongly inhibit Alzheimer's disease β-amyloid aggregation. Further studies indicate that the two metallo-supramolecular cylinders are specifically targeting the α/β-discordant stretch and reducing Aβ cytotoxicity. In vivo studies demonstrate that these complexes can ameliorate spatial memory deficits in a transgenic mouse model and decrease the insoluble Aβ level. This is the first demonstration that zinc-finger-like metallo-supramolecular cylinders can be Aβ aggregation inhibitors that specifically target an α/β-discordant stretch. Our work will prompt design and screening of metallo-supramolecular complexes as potential therapeutic agents for AD.

Graphical abstract: Metallosupramolecular complex targeting an α/β discordant stretch of amyloid β peptide

Supplementary files

Article information

Article type
Edge Article
Submitted
16 Mar 2012
Accepted
04 Jul 2012
First published
04 Jul 2012

Chem. Sci., 2012,3, 3145-3153

Metallosupramolecular complex targeting an α/β discordant stretch of amyloid β peptide

H. Yu, M. Li, G. Liu, J. Geng, J. Wang, J. Ren, C. Zhao and X. Qu, Chem. Sci., 2012, 3, 3145 DOI: 10.1039/C2SC20372C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements