Issue 33, 2012

How nanorough is rough enough to make a surface superhydrophobic during water condensation?

Abstract

Nanostructured surfaces which manifest superhydrophobic properties during water condensation have a potential to dramatically enhance energy efficiency in power generation and desalination systems. Although various such surfaces have been reported, their development has been fortuitous, not driven by an understanding of the underlying physical processes. In this work, we perform a comprehensive study of microscale water condensation dynamics on nanostructured superhydrophobic surfaces made using a variety of synthetic methods. We demonstrate that the growth mechanism of individual water microdroplets on these surfaces is universal and independent of the surface architecture. The key role of the nanoscale topography is confinement of the base area of forming droplets, which allows droplets to grow only through contact angle increase. The nearly spherical droplets formed in this fashion become highly mobile after coalescence. By comparing experimentally observed drop growth with interface free energy calculations, we show that the minimum observed confined microdroplet base diameter depends directly on the nanoscale surface roughness and degree of interfacial wetting. Specifically, we show that the microscale condensation mechanism depends on the height of a liquid film with volume equal to the fill volume between the nanostructures. This introduced roughness length scale is a universal metric that allows for facile comparison of arbitrarily complex surface architectures. We use this new fundamental insight to develop quantitative design guidelines for superhydrophobic surfaces intended for condensation applications.

Graphical abstract: How nanorough is rough enough to make a surface superhydrophobic during water condensation?

Article information

Article type
Paper
Submitted
02 Mar 2012
Accepted
21 Jun 2012
First published
19 Jul 2012

Soft Matter, 2012,8, 8786-8794

How nanorough is rough enough to make a surface superhydrophobic during water condensation?

K. Rykaczewski, W. A. Osborn, J. Chinn, M. L. Walker, J. H. J. Scott, W. Jones, C. Hao, S. Yao and Z. Wang, Soft Matter, 2012, 8, 8786 DOI: 10.1039/C2SM25502B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements