Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification†
Abstract
An ultrasensitive and highly selective method for polymerase chain reaction-free (PCR-free) messenger RNA (mRNA) expression profiling is developed through a novel cross-rolling circle amplification (C-RCA) process based on DNA-rotaxane nanostructures. Two species of DNA pseudorotaxane (DPR) superstructures (DPR-I and DPR-II) are assembled by threading a linear DNA rod through a double-stranded DNA (dsDNA) ring containing two single-stranded gaps. In this assay, cDNA that is specific for β-actin (ACTB) mRNA is taken as a model analyte. Upon the introduction of the target cDNA, the cDNA and the biotin-modified primer are hybridized to the single-stranded regions of the DNA rod and the gap-ring, respectively. As a result, the DPR-I dethreads into free DNA macrocycle and a dumbbell-shaped DNA nanostructure. In the presence of DNA polymerase/dNTPs, two release-DNA on the DPR-I are replaced by polymerase with strand-displacement activity, which can act as the input of the DPR-II to trigger the dethreading of DPR-II and the RCA reaction, releasing another two specified release-DNA strands those in turn serve as the “mimic cDNA” for DPR-I. The C-RCA reaction then proceeds autonomously. To overcome the high background induced by hemin itself, the biotinylated rolling circle products are captured by streptavidin-coated MNPs, achieving a detection limit as low as 0.1 zmol cDNA. The assay also exhibits an excellent selectivity due to its unique DNA nanostructure fabricated through base pairing hybridization. The ACTB mRNA expression in mammary cancer cells (MCF-7) is successfully detected.