Issue 2, 2013

An insight into the hybridization mechanism of hairpin DNA physically immobilized on chemically modified graphenes

Abstract

There is an emerging interest in developing electrochemical DNA biosensors which rely on label-free protocols for the detection of DNA hybridization and polymorphism. Lately, many of them have been using DNA probes which were physically adsorbed onto different graphene platforms. In these works, the biorecognition event is monitored by electrochemical impedance spectroscopy and the detection mechanism proposed needs verification by orthogonal methods. Here, we aim to provide an insight into the mechanism behind the impedimetric signal change upon the hybridization event on graphene platforms. For this aim, we used an orthogonal electrochemical method, differential pulse voltammetry, to examine the oxidation of guanine on target DNA molecules hybridized with an inosine-substituted hairpin DNA probe. We show that the successful biorecognition event leads to desorption of dsDNA from graphenic surfaces on a wide range of graphenic surfaces, such as graphene oxide, electrochemically reduced graphene oxide and thermally reduced graphene oxide. These results confirm the previous hypothesis based on electrochemical impedance spectroscopy data. In addition, these findings also have a profound impact on the understanding of both the interactions between DNA and graphene platforms and the DNA recognition event on graphene platforms for the construction of biosensors.

Graphical abstract: An insight into the hybridization mechanism of hairpin DNA physically immobilized on chemically modified graphenes

Article information

Article type
Paper
Submitted
26 Aug 2012
Accepted
07 Nov 2012
First published
08 Nov 2012

Analyst, 2013,138, 467-471

An insight into the hybridization mechanism of hairpin DNA physically immobilized on chemically modified graphenes

A. H. Loo, A. Bonanni and M. Pumera, Analyst, 2013, 138, 467 DOI: 10.1039/C2AN36199J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements